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In investigations of the buckling of bars beyond the elastic range by 

von Karman [l] and by Shanley [z] , one is required to know only the 

material properties at a given value of the critical force; the latter 

may depend upon the tangent and secant moduli at a given point on the u, 

E curve and on the modulus of elasticity (and, it goes without saying. 

also on the bar geometry). Thus the Bauschinger effect, which appears as 

a consequence of the acquired anisotropy of the material, is not taken 

into account. This fact suggests approximations in the work of von Karman 

and Shanley. The present paper, following an idea of Leibenzon [31 and 

Ishlinskii [4] considers the problem of the buckling of a uniformly com- 

pressed strip in the case of plane strain. 

The Shanley representation [21 is used. 

It-is shown that for other conditions being equal, the critical force 

does not depend on the nature of the acquired anisotropy. 

We consider a rectangular strip with sides o and b, compressed by a 

uniformly distributed load of intensity p (Fig. 1). We employ the 

plasticity relations of Prager [5] and of Ishlinskii [61. We take the 

plasticity condition in the form [VI 

Fig. 1. 
where aij are the stress components, E ij the 

strain components. 

Here and in the future, square brackets in the indices denote values 
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relating to the plastic range and curved brackets to the elastic range; 

they are omitted where not required. 

The associated relations of plastic flow take the form 

9x1 %Vl dsrrv1 -- 
(62 - csis,) - (c,, - C”iVl) = (cy - Csir,,) - (cr - cs& = 2 (&, - CsIxul) (2) 

The total strain is the sum of its components 

Eij = “(ij) + “[ij] (3) 

For simplicity we shall consider the material to be incompressible. 

Fig. 2. 

Relations (1) and (2) in the general case determine the behavior of 

an anisotropic strain hardening material for which the flow surface dis- 

places and widens (Fig. 2~). In the case f = const the flow surface 

moves as a rigid whole (Fig. 2b). In the case c = 0 the strain hardening 

is isotropic and the flow surface varies in the same way (Fig. 2~). 

By limiting ourselves to the case of linear strain hardening, the 

plasticity condition (1) takes the form 

-. 

1/h% - Cyr] ) - (av - c”[v]v + 4 o,y - C”[sg] --)” = 21~ + da v(&[,., - Er,,)a + 4EIx$ , ‘k, 

where C, d and k are constants. 

For a strip compressed into the plastic range, the relations 

“r=-P, sy = TxI/ L 0, E, + EU = 0, Exy = 0 I,.5 1 

hold up to the buckling load. 

The relation between the compressive load p and the compressive strain 

eX is obtained from (3). (4) and (5): 
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3 
-P 

Consequently, if the quantity c + d is a certain 
0 

6 ‘3 fixed constant g (tangent modulus), then the nature 

of the relation of -p to ez is one and the same for 
8 any plasticity condition (4); i.e. compression ex- 

Fig. 3. periments do not permit the determination of which 

plasticity condition (4) holds. 

( c+d 
-p l-k, = 2le + 2 (c + d) e, (6) 

Figure 3 shows the relation of -p to E for the flow conditions of x 
Fig. 2. 

It is clear that the critical force will either depend upon the value 

of Q alone or also upon it and the values of c and d. 

Assume that buckling of the strip occurs for p = p*. 

Be seek a solution of the problem in the form 

ax == $0 + sx’, . . . ) Er --I E ,o.+ e,‘;. . , 11 == uo + u’, . (7) 

The components with zero superscripts determine the state of-stress 

and strain up to the buckling load and are given by Formulas (5) and (6). 

The components with primed superscripts are those introduced by the 

buckling. The problem reduces to the determination of these components. 

The equation of equilibrium has the form 

The increments fj~[~~] appear in the relations of th? plasticity law, 

Equation (2). During bucklicg the components of induced strain are small 

and coincide with the strain increments, so that one must take 

dE[ij] z '[ij] 

By linearization of relations (2) and (4) for plastic strain compo- 

nents we shall have 

By use of the relations of the law of elastic strain from (9) and by 

taking account of (3), we obtain 
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For the induced state there are the boundary conditions 

sy > ‘-0 r,!;+~g=O wheny=O, ?J=b (III 

By assuming that U’ = a@/ay, 0’ = - %/ax, we satisfy the equation 
of incompressibility. For determination of the function @(r, y) frorcl (81 

rrnd (lo), taking account of the relations between strains and displace- 

ments, we obtain the equation 

a4al a4m a40 

ax4 2/32m+ F=O ( I - qi2G \ 

P~-l-+/,ac) (12) 

The general integral of Equation (12) has the form 

@ (5, ?I) = [CIYI (Y) + c2y2 (Y) + c3y3 (Y) 4- C4Yr (Y)lCOS"~ (13) 

Here 

Y1 (y) = cash uly sin Amy, 

Y3 (y) = s inh UIY cm QY, 

Ys (y) = cosb a1y co.3 say 

Y4 (y) -2 sinh cloy sin a2y 

where a1 = nJ [(l - p2)/21, a2 = nJ [(l + p*)/21, Ci (i = 1, 2, 3, 4) are 

arbitrary constants of integration. 

By expressing the stress and displacement components in terms of the 

function (13) and substitution into the boundary conditions (ll), we ob- 

tain a homogeneous linear system of algebraic equations in the Ci. 

During buckling Ci # 0, therefore the determinant of the System is 

equal to zero. From this we have the equation 

critical force 

giving the value of the 

At the edges of the strip we take n = m/a 

(7 = p*/C) (14) 

in order to satisfy the 

geometrical conditions; m is the number of half waves (a 2 1). BY taking 

the width of the strip sufficiently small and by expanding the right- 

hand side of (14) in series we obtain the formula 

in which second order terms have been retained. 

Consider the ratio q = [y]/(y), where [yl is known from (15) and (y) 

from the Bryan formula for elastic buckling of a strip. Then it follows 
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from (15) that 

Thus, the critical force depends only on the constants G and Q (which 

also follows from the buckling theory for bars). 

The parameter c, characterizing the effect of the acquired anisotropy 

(Bauschinger effect) does not appear in the expression for the critical 

force. 

The author thanks A.Iu. Ishlinskii for comments on this work. 
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